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ABSTRACT

Asymmetrically cracked specimens fail with considerably less ductility

than symmetrically cracked ones, due to the crack progressing along a

shear band into pre-damaged material. A formulation for the accumulation

* of damage ahead of an asymmetric crack is presented, based on strain incre-

ments following a power law relation. These results are integrated both

numerically and approximately.

The crack growth per unit displacement increases approximately as

the logarithm of the total crack advance per inclusion spacing P, and

varies inversely as the critical fracture strain y . This provides a

basis for predicting large-scale, fully plastic fracture from asymmetric

* weld defects, using small-scale laboratory speci.mens.
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I. Introduction

Most fracture tests use symmetric specimens. The crack tends to ad-

vance into the relatively undamaged region between two plastic shear zones.

In the fully plastic case, which is the desirable one in a structure, these

zones narrow into bands that traverse the section. In practice, welds or

other asymmetries may eliminate one of the shear bands (Fig. 1). In that

case, the crack advances along a single shear band into previously damaged

material. Thus one might expect that the ductility would be less. Preliminary

experiments have shown that this is indeed the case. Further evidence for

a lowered ductility in asymmetric cracking is the tendency to form a shear

lip at the end of an ordinary cup-and-cone fracture in a tensile test.

A plastic fracture mechanics analysis would be helpful in predicting

such fractures in service from laboratory tests on small specimens. The

*observations of Beachem and Meyn [11 and Fellows et al. [21, that

fracture occurs by a mixture of hole growth and sliding off, suggest using

the fracture criterion of McClintock, et al. [3] for fracture by hole

* growth in a shear band.

The required strain might first be sought from a non-hardening plas-

ticity solution. Non-hardening plasticity, however, indicates a single

* shear band with a constant displacement discontinuity and hence infinite

strain across it. Any fracture criterion would therefore be satisfied

simultaneously all along the shear band; total fracture would occur immed-

* iately upon any crack growth.

Strain-hardening causes the band to spread out, leaving a finite



strain except at the very tip. Shih (4] gave a non-linear elastic

solution for a stationary crack under combined shear and tension. This

solution will be used to estimate the displacement required to advance the
I-.-

crack (which is that to develop the critical strain or damage at a point one - -

inclusion spacing ahead of the current crack tip).

For growth, the same fracture criterion can be used. However, no

solution exists for determining the distribution of strain increments as

the crack advances into pre-strained material. An approximation will there-

fore be developed from Shih's non-linear elastic solution. The crack will

be assumed to follow the center of a 450 shear band.

This simplified, one-dimensional model should provide insight for

estimating fractures in service, and developing a more realistic two-

dtmen.ional analysis for a crack growing in rigid-plastic, strain-hardening

material.

2. Analysis

In treating Mode II shear, Shih [4] defined the stress-strain re-

lation for a hardening material in terms of the yield strain ao/E , the

strain hardening exponent 1/m , and a constant a

0( Ea /m

For general mixed-mode, non-linear elastic behavior, Shih found the

strain ahead of the crack in terms of a Mode I "mixity parameter" Mp

the far-field linear elastic stress intensity factor for mixed Mode I and Mode

II , the distance r ahead of the crack tip, and a normalized strain nkef
K 5~

*...
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which depends on the orientation of a point relative to the shear band,

(p e, MP) :
"Ta0  -r-m/(m + 1) P m, . (2)

e - -aC(Kp r- 2

Our problem is fully plastic, so the stress intensity factor is restated 0

in terms of the J-integral, and a function I (MP) (4]:
m

a-0 I (M p)(3
E " P) (3),

The relation between the J integral and the fully plastic strain distri- -

bution depends only on the fully plastic part of the stress-strain relation;

therefore, it is more convenient to use the Swift (5] equation, in terms

of the flow stress at unit strain rather than the yield strength:

n0
cn  (4)

Equating (1) and (4) with n 1/m gives

nS
0 (E Ej

Oa 
(5)

oSubstitution of (5) and (3) into (2) eliminates the initial yield variables

a and a in terms of the flow stress at unit strain a, which is more

appropriate for the fully plastic singularity:

(" E(, I/n, MP ) (6)lI l(M )  
"-

Equation 6 is a modified form of that given by Hutchinson (6] and Rice and

Rosengren [7] for the non-linear elastic, Mode I strain distribution ahead

S
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of a crack tip.

The path independent integral J is evaluated from its definition

in terms of its coordinates xl,X2  parallel and normal to the crack, the

work per unit volume U , tractions T. , and displacements u. along

the boundary s

J Udx 2 - Tj ds (7)

For rigid-nonhardening plasticity, the work per unit volume U is zero except

where the shear band cuts the surface. There it is given in terms of the

shear strength k and strain y by

U- ky (8)

From Fig. 1b, for a relative displacement u across a shear band of thickness

at

U

Y - (9)

The x2  distance is

5x2  = t , (10) " "

so the first term of the J-integral (7) becomes ku The displacement u

is constant along the grips (or outer boundaries, the only place the

tractions T are non-zero), so

-unless T .0

ax 1

S o .xl
-oS '
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Thus the second term of (7) vanishes everywhere, leaving

J -ku . (12)

Substituting (12) into (6) gives

1
-P( ,e) - k n+l (9 /,M)(3

a I 1ln (Mp) r) ij( lM ) .(3

Initiation of crack growth. Crack growth is assumed to begin when

a critical shear strain y c is reached at a distance p , say one

inclusion spacing, ahead of the crack tip.

McClintock, Kaplan, and Berg [8] expressed the condition for shear

fracture in terms of a damage ,n , depending on the shear strain y , a

hole growth factor FT , the ratio of mean normal to maximum shear stress

a/T , and the strain hardening exponent n

fll----Ln I1 + y2 (1 -n) 14
ZnFT yY 2(1- n) sih (14)

For non-hardening plasticity far from the crack tip, the loading

of Fig. 1 gives a/T - 1 . Closer to the tip the normal stress (/- will

be relaxed by local normal strains associated with any normal stress and

the dominant shear mode. Thus the critical shear strain at a point on

tne shear band to cause the crack to grow, (14), reduces to

S2
- T2  1 (15)

The displacement to initiate crack growth, u1 , is founa oy solving
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(13) in terms of E ij y/2. At the same time, take 6 0 along the shear band

and the Mode I mixity Mp to be zero since alT = 0

r •n+l

ui k---) C (16)
\PJIr Y=Y c

The strain along the shear band ahead of the crack tip is then

=c ( n( 
1 7 )

After the crack advance, the strain p ahead of the new crack tip is less

than yc (Fig. 2). In the rigid-plastic material, no strain occurs from the

stress redistribution due to crack growth, so a further displacement is

required for further crack growth. Unfortunately, no solution exists vet

for the strain ahead of a crack that is growing into hardening material.

Equation 16 is based on deformation plasticity which would not account for

the changing stress and accumulated strain-hardening around the crack tip.

An approximation for the strain can be obtained by differentiating

(16) with respect to the strain increment, in terms of the radius r to a

point and the current strain there:

(n + 1)I/

du 1 1/n r Y(r) n -

dy (r) 2k. -)"

ij

Normalizing the displacement with that for initiation from (16) and normnaliz-

ing the strains with " and the coordinates with c gives
c



d(u/ui) -nd(y(r)/ 1) " (n + 1)(rio)(Y(r)/y ) n  (18b)
CJ

Denote normalized variables by (:

du )n

d* - (n + l)r*(y*(r ) (18c)
dr (r)

For simplicity, delete (), so u/ui .- u, etc.:

du (n + 1)(-(r)) n r (18d)
dY (r)

For numerical integration with a finite Ac , the new strain field ahead

of a growing crack can be found by integrating the reciprocal of (18):

Y n+l r) n+( +1
Ynew oldr)+Au/r, (19)

The strain Ynew at r - 1 ahead of the new crack tip must reach the

normalized value of unity, for the crack to advance farther. From (19),

the required displacement increment is

n+l

Au 1 -Y ol(1) (20)c old

' The strain at any other point on the shear band is

-n+l Y n+l. ( r Yn+l1
'newlr) oldCr) +old(1)]/rave . (21)

Note that in (20) and (21), yn+l (r) could be replaced by any other

damage function n whose radial distribution also satisfies (21), without

changing the normalized growth rate. The strain hardening exponent n would

P.* -. .
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not appear. Therefore, when the equations are normalized by dividing by

n+lui  which is proportional to y c , the displacement required for a given

crack growth c - ci  is independent of the strain hardening exponent n

Before numerically integrating these equations, consider the possibility

of a quasi-steady-state solution.

3. A Quasi-Steady-State Solution

In general the strain at r ahead of a crack chat has grown from c.

through to c is

y(r,c) , { du d (22)=cdu d

If a quasi-steady state solution exists (du/d % du/dc) , then (18d) with

r r + (c - %) and (22) give

; =c
y(r,c) W du fd n (23)dc - c. (n + l)(r + c - )(y(r + c - '))(3

Assuming a solution of the form

y(r + c - ) = (r + c - ) (24)

with X>0 gives, for (23),

1 _ du 1 + r 1 (251,\ dc (n +) - -,
xa d (25)"

r," . C .
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Integrating (25) gives

S_ du 1 ciXn rXn (
X dc (n + 1)Xn [(c + r - - . (26)

r

At best, (26) is satisfied for a variety of r only if X << 1. Then using

xX U x + X Zn x (27)

in (26) gives, for Unr << 1

1 ( + 1) [Zn(c - ci + r) - Zn r] . (28)

Near the crack tip (for r 1 (=p, when de-normalized)) and after large

growth (c - c >> 1),.solving for du/dc gives

du n + 1
dc n(c- c + 1) (29)

i

As it stands, (29) gives an infinite displacement rate at c c

Since the initiation strain was neglected in (22), (29) should be modified

to fit the initial displacement rate per unit crack growth from the more

exact solution. From Fig. 2, the drop in strain from 0 to P + dc in front

. of the crack must be made up by the displacement required for further growth:

dYJdc - du (30)
dr du

The initial strain gradient is found from (17) in normalized form:

1 I !/(n+l) +-- at r - (31)
dr n + 1 rn + 1"

........................-.. .... .. * . .



The displacement required per unit strain at a normalized r - I is found

from (18d) at a normalized y - 1

du + 
-(32)dy

Combining (30) - (32) gives a result that can be matched to (29) at c

Ci:

|dY/drI du n + 1
du j~~.=1if ~-n l(33)Ldc dyTdu =  dc Zn(c ci + exp(n + 1)]c i

The integral of (33) to find the quasi-static displacement since initiation

is carried out with the intermediate variable

y -n( -'c + exp(n + 1)) (34)

c

Uqs - n( c + exp(n + 1))
ci

[ 2 3 7 y(c)'--
- (n + 1) 2ny + y +--+--+ I (35)

To determine convergence, consider the ratio of adjacent terms:

Thus the sum of the remaining terms is bounded by

" j ( + i y2(j- 1) + (Y U 1) + .] _

S iJt [1) j2 Q + l) (j + 2) 2

--

, -. --
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. 2 3

Sr < i_1 /(l - y/j) -for J > Y (37)

A sufficient number of terms has been evaluated when

Sr  S
r = < (38)

u t tolqs

4. Numerical Intearation

To establish an array of strain sites on the shear band ahead of the

crack tip, choose the first site such that, before growth by Ac , the site

is p + Ac/2 ahead of the current crack tip, and after growth, only P - Ac/2

ahead. Define Ac as a binary fraction of p in terms of an integer Ndc:

Ac - P/2Ndc (39)

S

Set the next damage site a distance Ac from the first site. Since

the damage decreases rapidly with distance ahead of the crack tip, no

accuracy is lost, and large computational time savings are achieved, by

initially doubling the intervals between sites (see Fig. 3). Thus use

spacings of Ac, 2Ac, 4Ac, .... The initial number of damage sites, ixdmx, is ex-

pressed in terms of the initial ligament length L.

3..
ixdmx 2 + INT~ 1 g 2  (40)

The maximum number of sites is bounded by twice the value given by (40).

.. .- .

S
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In the program,the damage at each site is calculated from (19) as if the

crack were at its average position, P before the first damage site.

As the crack grows, the old second site becomes the new first site.

The old third site is more than Ac away from the new first site, so a-new

site is introduced midway between the two. Further from the crack tip, when-

ever the ratio of the distances between neighboring pairs of sites exceeds

2, a new site is introduced.

Hvperbolic interpolation is used to find the damave and strain

at any new sites. In terms of the coordinates xI , x2  at the old sites

either side of the new site, the value at the new site is:

B-y Y 1 (x- c)/(x -c) B  , (41)

-. where

log(Y 1/Y2)

log(x 2 _ c)/(x c)] " (42)
21

The above analysis was carried out with a well-annotated FORTRAN-IV

computer program, in structured form with BLOCK IF statements. It is avail-

able at cost, with a User's Manual and sample problem, on unformatted ASCII

tape [9].
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5. Results and Discussion

a) Strain distribution. As shown in Fig. 4, the strain distribution

continually flattens out in front of the crack at a decreasing rate that

does not reach a steady state. This leads to a continually increasing crack

growth rate per unit displacement.

b) Crack growth rate. The absence of any effect of strain hardening on

crack growth rate was verified by the numerical integration, which was pro-

grammed in the original un-normalized form. The results for various step

sizes converge rapidly, as shown in Fig. 5, with a 4% error associated with

crack growth increments of Ac/ - 1/8

The incorrect dependence of the quasi-steady-state approximation on the

strain hardening exponent n leads to an overestimate by about a factor of

(1.1 + n)

c) Size effects. As shown by (29), the crack growth per unit displace-

ment increases logarithmically with the total crack growth. Thus no steady

state is reached, as shown in Fig. 6, which extends to a crack growth of . +

4(c - c )/P 10 , (corresponding to a fracture process zone size P 0.01
i

mm and a total cross-section of 100 mm). The availability of such a curve

allows estimating the displacement to cause fracture of large specimens 0

from tests on small samples. For example, the ratio of the crack growth

rate for a prototype part (e.g. Fig. 6) to that for a laboratory specimen

(e.g. Fig. 5) is approximately

dc/ (dc\ Zn((c - ci)/P) prot ZnlOOOO
\du/p do lab Zn((c - c )/Q) lab n200 . ., 1.7 (43)

)pro ., .o l -± - -lab
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d) Initiation displacement from material properties. For the initia-

tion displacement of (16), the normalized shear strain Ii and the coefficient
ij

Ii/n are given as functions of the strain hardening exponent in Table I from

Shih (4]. Since the strain hardening exponent is small compared to unity,

these values, when substituted into (16), indicate that the displacement for ini-

tiation is of the order of the inclusion spacing 0 times the critical strain to

fracture Yc Equation (33) then indicates that, in the un-normalized

form, the crack growth per unit displacement is of the order

dc 0 1 Zn (44)

e) Preliminary experiments. The results of preliminary experiments

are summarized in Table 2. The critical fracture strain for these alloys

(except for the 6061-T6) can be estimated from the different lengths of the -

two displacement crack surfaces by averaging them to get the crack growth

to fracture, (s + sl)/2 cf ci , and taking their differences to get the

displacement across the shear band at fracture, s2 - s- uf Fractographic

estimates of p then allow calculating uI from the function F of Figs. 5

and 6;

uf/ui = F( (cf -cu )I; ui W uf (uf . (45)

Solving (16) for y at r = p allows finding the critical fractur- qtr.in:

(ui 1 \11(n+l)

Yc 2 J - / (46)

(Note that in these tests the actual initiation displacement would not be

that calculated above, because the shear band was at 450 to the initial

*.... .. . . .'.. .. ... . . ." v . .. . . . . .., . .. ... .,,,. ,'.... ,.,. .', ',-..' "... '. '. ' ., '.. -' .. " * '"v " 7 . ',""' " '" '
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crack.) The-results, given in Table 2, are plausible except for the high

strength 6061-T6 alloy, discussed below in Paragraph f. It should be

* noted further that these calculations were made under the assumption that

* the crack grew along the center of the shear band at 450 to the tensile

axis. There was a tendency for the angle to be somewhat greater than 450,

giving a higher triaxiality a/k . This would reduce the critical strain

to fracture. The fracture strain may be further reduced by the localization

of flow. In simple shear, as here in Mode II and also in torsion, such

localization is accelerated by the strain softening that occurs when the

strain increment reverses sign on those slip planes that rotate past the 450

direction (planes at 45 0 to the axes of macroscopic shear do not slip; those

* at less than 450 slip one way, while those at more than 450 slip the other).

* Furthermore, the preferred orientation that develops in simple shear promotes

single slip and thus also reduces strain hardeiiing.

f) Elastic and blunting effects. A rough estimate of the effect of

* elasticity on the above comparison of the rigid-plastic analysis with

experiments will be made on the basis of Mode III which, like the mixed

* Modes I and II but in contrast to pure Mode I, shows an extended plastic

zone ahead of the crack.

Before crack growth, the predominant elastic-plastic effect occurs as

*the plastic zone grows across the specimen through the distance L .The

resulting plastic strain at the structural distance p is, from (2b) of

[3],/p-1 (7
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Approximating the shear yield strain yy with Bhn/3E , taking L to be

the average surface length (s1+s2)/2 , and substituting numerical values

from Table 2 into (47) gives strains of the order of half the critical

(fracture) strains y . Therefore, the elastic-plastic strain is

important, and decreases the fully plastic displacements required for

initiation, ui , below those found in Table 2. Blunting effects, on the

other hand, which are neglected in the rigid-plastic analysis, tend to

increase ui

During crack growth, with a contained plastic zone of extent R the

elastic-plastic strain is, from (10) of [3],

- (l + + lin (48)\ c/ rPp pc

which is to be compared to that from the rigid-plastic analysis,

ac dc/du

where the numerator is found from (18d) and the denominator from (33),

(which are normalized with y, p, and ui  .

At the start of growth, with R N c = 0(L - 2.5 mm) , (48) gives an

elastic-plastic strain per unit crack growth of 0.7 to 2.2 mm , while

(49) gives a corresponding fully plastic strain of 45 to 26 mm . Thus

the rigid-plastic approximation is initially very good.

Later when the crack has grown almost completely through (c-ci  L =

2.5 um), the fully plastic strain from (49) decreases by about a factor of 5

-1
to 10 to 6 m-, . This should be compared with the elastic-plastic strain

......................................................

::. : -:. :
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per unit growth. Equation (48) no longer applies when the plastic zone has

traversed the specimen, but it seems likealy that the strain per unit growth

continues to increase as the slip hand intensifies. Thus the rigid-plastic

approximation will ultimately become poor as the crack grows, although a

very large specimen would be required for instability under contained

yielding. (More formal estimates might be made from the speculations of

Rice et al. 110, p. 204]).

The instability that precluded getting data for the 6061-T6 may have

been due to the compliance of the testing machine, rather than to elastic-

plastic strains in the ligament. Consider the following argument. Let K

denote the combined machine and grip stiffness; it is the drop in applied

load per unit specimen extension. The load drop in the net section due to

a crack growth dc is roughly given in terms of the tensile strength of

the material TS and the breadth of the specimen B by TS Bdc *Then

for stability

dP B TS
K >- - - (50)du du/dc

Although comparison of the right-hand sides of (50) for the different alloys t'

explains the stability with 6061-0, it fails to distinguish between the

* stability with the cold rolled steel and the instability with the 6061-T6

aluminum alloy. While the effect of extra compliance in the shoulders of

* the aluminum on K is a possible explanation, further work is needed for

certainty.
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6. Conclusions

S1.- An estimate of fully plastic Mode II crack growth along 45*

slip bands, as might be encountered from cracks near a weld, was devel-

oped from Shih's analysis for nonlinear elastic behavior. The results

I appear plausible when compared to preliminary experiments on several

alloys and heat treatments. Elastic effects appear to become important in

harder alloys such as 6061-T6, with an elastic strain at the tensile

strength of TS/E - 0.006.

2. From the rigid-plastic theory, the predicted displacement to crack

initiation is of the order of the inclusion spacing P times the critical

strain to fracture y~c

3. The crack growth per unit displacement is of the order of the

logarithm of the total crack advance per unit inclusion spacing p

divided by the critical fracture strain -y C, equation (44).

4. The relation between displacement for a given crack advance and

j critical fracture strain is relatively independent of the strain hard-

ening exponent n and inclusion spacing p , so that the critical frac-

ture strain can be found from crack growth data, equation (44).

p 5. The results indicate how to extrapolate tests on laboratory speci-

mens to prototype parts. For instance the crack growth per unit displace-

mernt after a 100 -m crack growth appears to be about twice that after a

P2 mm growth, equation (29).

6. There are needs for more detailed and comprehensive experi-

- ments, a study of the directional effects, a solution to the singular

P strain distribution ahead of a crack growing in rigid-plastic, strain-

* hardening material, and finally an elastic-plastic analysis.
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Table 1 Mode II Non-Linear Singularity Coefficients I 1n(.%p 0) and

Normalized Strain ij (6 0,-M - 0) from Shih [4]

P 0)
Strain hardening I 1n(MP =0) ij (96 0, 1/n, M~-0

exponent ni

0 0.59 0.88

.1 0.72 0.88

.2 0.83 0.88

.3 0.92 0.88

.4 1.01 0.88
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